pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal#

pyhgf.updates.prediction_error.dirichlet.likely_cluster_proposal(mean_mu_G0, sigma_mu_G0, sigma_pi_G0, expected_mean=typing.Union[jax.Array, numpy.ndarray, numpy.bool, numpy.number, bool, int, float, complex], expected_sigma=typing.Union[jax.Array, numpy.ndarray, numpy.bool, numpy.number, bool, int, float, complex], key=Array((), dtype=key<fry>) overlaying: [ 0 42], n_samples=20000)[source]#

Sample likely new belief distributions given pre-existing clusters.

Parameters:
mean_mu_G0

The mean of the mean of the base distribution.

sigma_mu_G0

The standard deviation of mean of the base distribution.

sigma_pi_G0

The standard deviation of the standard deviation of the base distribution.

expected_mean

Pre-existing clusters means.

expected_sigma

Pre-existing clusters standard deviation.

key

Random state.

n_samples

The number of samples used during the simulations.

Returns:
new_mu

A vector of means candidates.

new_sigma

A vector of standard deviation candidates.

weights

Weigths for each cluster candidate under pre-existing cluster (irrespective of new observations).

Parameters:
  • mean_mu_G0 (float)

  • sigma_mu_G0 (float)

  • sigma_pi_G0 (float)

  • key (Array)

  • n_samples (int)

Return type:

Tuple[Array, Array, Array]