pyhgf.updates.prediction_error.dirichlet.get_candidate#

pyhgf.updates.prediction_error.dirichlet.get_candidate(value, sensory_precision, expected_mean, expected_sigma, n_samples=20000)[source]#

Find the best cluster candidate given previous clusters and an input value.

Parameters:
value

The new observation.

sensory_precision

The expected precision of the new observation.

expected_mean

The mean of the existing clusters.

expected_sigma

The standard deviation of the existing clusters.

n_samples

The number of samples that should be simulated.

Returns:
mean

The mean of the new candidate cluster.

sigma

The standard deviation of the new candidate cluster.

Parameters:
  • value (float)

  • sensory_precision (float)

  • expected_mean (Array | ndarray | bool | number | bool | int | float | complex)

  • expected_sigma (Array | ndarray | bool | number | bool | int | float | complex)

  • n_samples (int)

Return type:

Tuple[float, float]