pyhgf.updates.prediction_error.dirichlet.get_candidate#

pyhgf.updates.prediction_error.dirichlet.get_candidate(value, sensory_precision, expected_mean, expected_sigma, n_samples=20000)[source]#

Find the best cluster candidate given previous clusters and an input value.

Parameters:
  • value (float) – The new observation.

  • sensory_precision (float) – The expected precision of the new observation.

  • expected_mean (Array | ndarray | bool | number | bool | int | float | complex) – The mean of the existing clusters.

  • expected_sigma (Array | ndarray | bool | number | bool | int | float | complex) – The standard deviation of the existing clusters.

  • n_samples (int) – The number of samples that should be simulated.

Returns:

  • mean – The mean of the new candidate cluster.

  • sigma – The standard deviation of the new candidate cluster.

Return type:

tuple[float, float]