References
Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Frontiers in psychology, 5, 849.
Akaike, H. (2011). Akaike's information criterion. In M. Lovric (Ed.), International encyclopedia of statistical science (pp. 25-25). Springer.
Aponte, E. A., Raman, S., Frässle, S., Heinzle, J., Penny, W. D., & Stephan, K. E. (2018). mpdcm: A toolbox for the analysis of dynamic causal models. PLOS Computational Biology, 14(10), e1006319. https://doi.org/10.1371/journal.pcbi.1006319
Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. https://doi.org/10.1080/01621459.2017.1285773
Blokpoel, M., & van Rooij, I. (2021). Theoretical modeling for cognitive science and psychology. MIT Press.
Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage Publications.
Coombs, C. H., Dawes, R. M., & Tversky, A. (1970). Mathematical psychology: An elementary introduction. Prentice-Hall.
Datseris, G., Vahdati, A. R., & DuBois, T. C. (2024). Agents.jl: A performant and feature-full agent-based modeling software of minimal code complexity. Simulation, 100(10), 1019-1031. https://doi.org/10.1177/00375497231203671
Daunizeau, J., Den Ouden, H. E., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010). Observing the observer (I): meta-bayesian models of learning and decision-making. PloS one, 5(12), e15554.
Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285-298. https://doi.org/10.1016/S0896-6273(02)00963-7
Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67(1), 641-666. https://doi.org/10.1146/annurev-psych-122414-033645
Ge, H., Xu, K., & Ghahramani, Z. (2018, March). Turing: A language for flexible probabilistic inference. In International Conference on Artificial Intelligence and Statistics (pp. 1682-1690). PMLR.
Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483.
Griffiths, T. L., Chater, N., & Tenenbaum, J. B. (Eds.). (2024). Bayesian models of cognition: Reverse engineering the mind. MIT Press.
Hess, A. J., Iglesias, S., Köchli, L., Marino, S., Müller-Schrader, M., Rigoux, L., Rutledge, R. B., Toelch, U., Webb, T. W., & Stephan, K. E. (2025). Bayesian workflow for generative modeling in computational psychiatry. Computational Psychiatry, 9(1), 76-107. https://doi.org/10.1162/cpsya00107
Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.
Houghton, G. (Ed.). (2004). Connectionist models in cognitive psychology. Psychology Press.
Innes, M. (2018). Don't unroll adjoint: Differentiating SSA-form programs. arXiv preprint arXiv:1810.07951.
Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ: A unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33), 1143. https://doi.org/10.21105/joss.01143
Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.
Macal, C. M., & North, M. J. (2005, December). Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference (pp. 14-pp). IEEE. https://doi.org/10.1109/WSC.2005.1574234
Madsen, J. K., Bailey, R., Carrella, E., & Koralus, P. (2019). Analytic versus computational cognitive models: Agent-based modeling as a tool in cognitive sciences. Current Directions in Psychological Science, 28(3), 299-305.
Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8, 825. https://doi.org/10.3389/fnhum.2014.00825
Mikus, N., Lamm, C., & Mathys, C. (2025). Computational phenotyping of aberrant belief updating in individuals with schizotypal traits and schizophrenia. Biological Psychiatry, 97(2), 188-197.
Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. https://doi.org/10.1016/j.tics.2011.11.018
Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients. Advances in neural information processing systems, 33, 12472-12485.
Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: Background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2), 199-203. https://doi.org/10.1002/wics.199
Palmeri, T. J., Love, B. C., & Turner, B. M. (2017). Model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 59-64. https://doi.org/10.1016/j.jmp.2016.10.010
Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind, brain, and behavior. MIT Press.
Revels, J., Lubin, M., & Papamarkou, T. (2016). Forward-mode automatic differentiation in Julia. arXiv preprint arXiv:1607.07892.
Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT‐R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488. https://doi.org/10.1002/wcs.1488
Sainsbury-Dale, M. (2024). NeuralEstimators: Likelihood-Free Parameter Estimation using Neural Networks. R package version 0.1-2.
Valton, V., Wise, T., & Robinson, O. J. (2020). The importance of group specification in computational modelling of behaviour. Zenodo. https://doi.org/10.5281/zenodo.7089314
Van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939-984. https://doi.org/10.1080/03640210801897856
Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413-1432. https://doi.org/10.1007/s11222-016-9696-4
Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning (pp. 301-336). Academic Press.
Wang, Y., Widrow, B., Zadeh, L. A., Howard, N., Wood, S., Bhavsar, V. C., Butz, C., Fiber, O., He, Q., Gaballa, A., Han, W., Liang, D., Michel, H. E., Miller, K. E., Ruan, L., Schuster, A., Shahab, W., Shrestha, P., Sun, S., ... & Shell, D. F. (2016). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. https://doi.org/10.4018/IJCINI.2016100101
Watanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14(1), 867-897.
Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547. https://doi.org/10.7554/eLife.49547