References

  • Ahn, W. Y., Vasilev, G., Lee, S. H., Busemeyer, J. R., Kruschke, J. K., Bechara, A., & Vassileva, J. (2014). Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Frontiers in psychology, 5, 849.

  • Akaike, H. (2011). Akaike's information criterion. In M. Lovric (Ed.), International encyclopedia of statistical science (pp. 25-25). Springer.

  • Aponte, E. A., Raman, S., Frässle, S., Heinzle, J., Penny, W. D., & Stephan, K. E. (2018). mpdcm: A toolbox for the analysis of dynamic causal models. PLOS Computational Biology, 14(10), e1006319. https://doi.org/10.1371/journal.pcbi.1006319

  • Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: A review for statisticians. Journal of the American Statistical Association, 112(518), 859-877. https://doi.org/10.1080/01621459.2017.1285773

  • Blokpoel, M., & van Rooij, I. (2021). Theoretical modeling for cognitive science and psychology. MIT Press.

  • Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Sage Publications.

  • Coombs, C. H., Dawes, R. M., & Tversky, A. (1970). Mathematical psychology: An elementary introduction. Prentice-Hall.

  • Datseris, G., Vahdati, A. R., & DuBois, T. C. (2024). Agents.jl: A performant and feature-full agent-based modeling software of minimal code complexity. Simulation, 100(10), 1019-1031. https://doi.org/10.1177/00375497231203671

  • Daunizeau, J., Den Ouden, H. E., Pessiglione, M., Kiebel, S. J., Stephan, K. E., & Friston, K. J. (2010). Observing the observer (I): meta-bayesian models of learning and decision-making. PloS one, 5(12), e15554.

  • Dayan, P., & Balleine, B. W. (2002). Reward, motivation, and reinforcement learning. Neuron, 36(2), 285-298. https://doi.org/10.1016/S0896-6273(02)00963-7

  • Forstmann, B. U., Ratcliff, R., & Wagenmakers, E. J. (2016). Sequential sampling models in cognitive neuroscience: Advantages, applications, and extensions. Annual Review of Psychology, 67(1), 641-666. https://doi.org/10.1146/annurev-psych-122414-033645

  • Ge, H., Xu, K., & Ghahramani, Z. (2018, March). Turing: A language for flexible probabilistic inference. In International Conference on Artificial Intelligence and Statistics (pp. 1682-1690). PMLR.

  • Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483.

  • Griffiths, T. L., Chater, N., & Tenenbaum, J. B. (Eds.). (2024). Bayesian models of cognition: Reverse engineering the mind. MIT Press.

  • Hess, A. J., Iglesias, S., Köchli, L., Marino, S., Müller-Schrader, M., Rigoux, L., Rutledge, R. B., Toelch, U., Webb, T. W., & Stephan, K. E. (2025). Bayesian workflow for generative modeling in computational psychiatry. Computational Psychiatry, 9(1), 76-107. https://doi.org/10.1162/cpsya00107

  • Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler: Adaptively setting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593-1623.

  • Houghton, G. (Ed.). (2004). Connectionist models in cognitive psychology. Psychology Press.

  • Innes, M. (2018). Don't unroll adjoint: Differentiating SSA-form programs. arXiv preprint arXiv:1810.07951.

  • Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. (2019). ArviZ: A unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4(33), 1143. https://doi.org/10.21105/joss.01143

  • Lee, M. D., & Wagenmakers, E. J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.

  • Macal, C. M., & North, M. J. (2005, December). Tutorial on agent-based modeling and simulation. In Proceedings of the Winter Simulation Conference (pp. 14-pp). IEEE. https://doi.org/10.1109/WSC.2005.1574234

  • Madsen, J. K., Bailey, R., Carrella, E., & Koralus, P. (2019). Analytic versus computational cognitive models: Agent-based modeling as a tool in cognitive sciences. Current Directions in Psychological Science, 28(3), 299-305.

  • Mathys, C. D., Lomakina, E. I., Daunizeau, J., Iglesias, S., Brodersen, K. H., Friston, K. J., & Stephan, K. E. (2014). Uncertainty in perception and the hierarchical Gaussian filter. Frontiers in Human Neuroscience, 8, 825. https://doi.org/10.3389/fnhum.2014.00825

  • Mikus, N., Lamm, C., & Mathys, C. (2025). Computational phenotyping of aberrant belief updating in individuals with schizotypal traits and schizophrenia. Biological Psychiatry, 97(2), 188-197.

  • Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1), 72-80. https://doi.org/10.1016/j.tics.2011.11.018

  • Moses, W., & Churavy, V. (2020). Instead of rewriting foreign code for machine learning, automatically synthesize fast gradients. Advances in neural information processing systems, 33, 12472-12485.

  • Neath, A. A., & Cavanaugh, J. E. (2012). The Bayesian information criterion: Background, derivation, and applications. Wiley Interdisciplinary Reviews: Computational Statistics, 4(2), 199-203. https://doi.org/10.1002/wics.199

  • Palmeri, T. J., Love, B. C., & Turner, B. M. (2017). Model-based cognitive neuroscience. Journal of Mathematical Psychology, 76, 59-64. https://doi.org/10.1016/j.jmp.2016.10.010

  • Parr, T., Pezzulo, G., & Friston, K. J. (2022). Active inference: The free energy principle in mind, brain, and behavior. MIT Press.

  • Revels, J., Lubin, M., & Papamarkou, T. (2016). Forward-mode automatic differentiation in Julia. arXiv preprint arXiv:1607.07892.

  • Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT‐R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews: Cognitive Science, 10(3), e1488. https://doi.org/10.1002/wcs.1488

  • Sainsbury-Dale, M. (2024). NeuralEstimators: Likelihood-Free Parameter Estimation using Neural Networks. R package version 0.1-2.

  • Valton, V., Wise, T., & Robinson, O. J. (2020). The importance of group specification in computational modelling of behaviour. Zenodo. https://doi.org/10.5281/zenodo.7089314

  • Van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939-984. https://doi.org/10.1080/03640210801897856

  • Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Statistics and Computing, 27, 1413-1432. https://doi.org/10.1007/s11222-016-9696-4

  • Wagner, A. R., & Rescorla, R. A. (1972). Inhibition in Pavlovian conditioning: Application of a theory. In R. A. Boakes & M. S. Halliday (Eds.), Inhibition and learning (pp. 301-336). Academic Press.

  • Wang, Y., Widrow, B., Zadeh, L. A., Howard, N., Wood, S., Bhavsar, V. C., Butz, C., Fiber, O., He, Q., Gaballa, A., Han, W., Liang, D., Michel, H. E., Miller, K. E., Ruan, L., Schuster, A., Shahab, W., Shrestha, P., Sun, S., ... & Shell, D. F. (2016). Cognitive intelligence: Deep learning, thinking, and reasoning by brain-inspired systems. International Journal of Cognitive Informatics and Natural Intelligence, 10(4), 1-20. https://doi.org/10.4018/IJCINI.2016100101

  • Watanabe, S. (2013). A widely applicable Bayesian information criterion. Journal of Machine Learning Research, 14(1), 867-897.

  • Wilson, R. C., & Collins, A. G. (2019). Ten simple rules for the computational modeling of behavioral data. eLife, 8, e49547. https://doi.org/10.7554/eLife.49547